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A fluid bridge between two identical coaxial discs is considered which, in equilibrium, has the form of a convex unduloid (that 
is, a wave-like surface). It is shown that the stability of the equilibrium and the existence of small oscillations of the fluid depend 
on the coercivity of the bilinear form associated with the operator arising in the problem which is determined by the potential 
of the surface tension forces. The problem reduces to an operator equation in which one of the operators is associated, by virtue 
of Laplace’s law, with the mean curvature of the perturbed free surface. The problem of coercivity reduces to an auxiliary eigenvalue 
problem. The conditions of stability are found to be satisfied if all of the eigenvalues of the problem are strictly greater than 
unity. Sufficient conditions for stability are obtained using arguments based on the theory of elliptic functions. The existence of 
natural frequencies is proved using functional analysis methods. 0 2003 Elsevier Science Ltd. All rights reserved. 

The problem of the stability and small oscillations of a fluid mass under low gravity conditions, when 
surface tension plays a decisive role, has been the object of numerous investigations ([l-4] and others) 
including the case of a fluid bridge between two coaxial discs [5-71. 

It is well known that, if the fluid mass has an axially symmetric form in equilibrium, its free surface, 
the mean curvature of which is constant, can be a cylinder, a sphere, an unduloid, a nodoid or a catenoid. 
In other words, this is a surface of revolution, the meridian of which is the geometric location of the 
focus of an ellipse, hyperbola or parabola that rolls without slipping along a certain straight line [8]. 
The problem of the stability and small oscillations of catenoidal and spherical bridges has been 
investigated in detail in [9, 101. 

1. FORMULATION OF THE PROBLEM AND EQUATIONS OF MOTION 

Consider a fluid bridge which occupies the domain T between two coaxial discs S1 and S2, the boundaries 
of which C1 and C2 are two identical circles. We will assume that the free surface of the fluid in 
equilibrium is a convex wave-like surface (an unduloid) The equations of the surfaces S1 and S2 are 
given as z = h and z = -h respectively. We introduce a cylindrical system of coordinates r, 8, z. The 
equations [8] 

pY?- 
r = acoscp+ a e - sm cp 

z = asincp+ tg,J?Z&~-~ a(e2 - 1) 
2 p---Tdu 0 cos u e - sm u 

determine the meridian of the convex unduloid which corresponds to an ellipse with semi major axis 
a and eccentricity e, 0 c e < 1. The part of it located between the planes z = h and z = -h is described 
by the inequality 

-cp, c -‘pl I cp I cp, c cpo; ‘p. = arcsine, 0 c cp, c x/2 

where cp is the angle formed by the radius vector and the unit vector of the outward normal no to the 
surface So and outward with respect to the fluid (Fig. 1). 
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Fig. 1 

It is natural to introduce elliptic functions. On putting 

x = iJ-& 

as is customary [ll], we have within the framework of the standard notation for Jacobian functions 

sincp = esnx, coscp = dnx, J-9 = ecnx, dq = ecnxdx 

We now introduce the notation 

x,-,(x) = (dnx+esnx)*, xi(x) = dnx(dnx+esnx)*, K = x(q+,) 

Y’,(x) = (dnx+ecnx)*, Y,(x) = dnx(dnx+ecnx)*, K = x(0,) 

The equation of the surface then takes the simpler form 

r= a&i5 z = a(esnx+ E(x)) 
x 

E(x) = Idn*udu, -K I x I K 
0 

(1.1) 

Hence, we have 
h = z(K) = a(esnK+E(K)) 

and an element of the surface is specified as 

dS = a2’Po(x)d0dx 

The equation of the perturbed free surface differs from (1.1) in that there is a term &e, x, t) on the 
right-hand side of the first equality of (1.1). The function c and its derivatives are assumed to be small. 

Note that the normal displacement of a point of the free surface is given, apart from a term of the 
first order of smallness, by <cosQ, = L,dnx (Fig. 2). 

The function r(e, x, t) must therefore satisfy the periodicity conditions 

w, x, t) = ue + 2% x, t) (1.2) 

the boundary conditions 
c(e,+K,t) = 0 (l-3) 
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G 
Fig. 2 

and a condition which expresses the constancy of the fluid volume 

fr cos<pdS = 0 
SO 

which is reducible to the form 

fr x,(x)&dx = 0 
n 

(14 

where the domain Q = ((t3, x): 0 < 6 G 2x, --K < x c K} is a rectangle. 
We will assume that the fluid is ideal and incompressible; its constant density is equal to p and the 

fluid flow is irrotational. The velocity potential @(r, 8, X, t) is then a harmonic function, that is 

Aa = 0 (1.5) 

in the domain r occupied by the fluid, and the function @ must satisfy the kinematic conditions. 

awan = ~&dnx on s,(&= ayiat); iwan = 0 when 2 = +h (1.6) 

where alan is a derivative along the outer normal to the domain z. 
Supposepa is the constant external pressure andp is the pressure in the fluid. The dynamic condition 

on the free surface is given by Laplace’s law [12] 

p-p0 = -a(R;’ + I?;‘) 

where a is the surface tension, which is assumed to be constant, and RI and R2 are the radii of curvature 
of the perturbed free surface S, which are assumed to be negative when the centre of principal curvature 
is located on the same side of the surface as the fluid. 

On calculating the mean curvature of the surface S using the general formula [13] in the first 
approximation with respect to 6, we obtain 

R;’ + R;’ = -aa-’ + a-*9[& Eb[&l = [(roe + Odn*x+ (~,dn*~),l/‘f’~(~) 

The linearized Bernoulli equation then gives 

a4vafl, = p9[{]+C(t), p = c&a-* (1.7) 

where C(t) is an arbitrary function of time. 
Conditions (1.2)-( 1.4) h ave to be added to Eq. (1.5) and conditions (1.6). 
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2. THE OPERATOR EQUATION OF THE PROBLEM 

We will now consider the auxiliary Neumann problem A0 = 0 in the domain z; &D/an = 0 when 
z = +h with the compatibility condition 

I gdnxdS = 0 
&I 

If 

fi = g E L2(S,-,), fgdnxdS = 0 s, }, ii’(z) = {uE H’(~),lul$dnxdl;O} 

then the unique function cf, E fi’ (2) determining the weak solution of the Neumann problem such that 

I grad@gradVdz = gY IS,dnxdS, VP E k’(z) I 
7 so 

corresponds to every function g E p. 
The trace Cp ] So of the function <D on the surface So belongs to the space E?. A linear operator K from 

H into H can therefore be defined as follows: 

@IS” = Kg 

It is-well known [14] that the operator K is continuous, self-adjoint, positive definite and compact 
from H into H. In the case under consideration, g = ct and Eq. (1.7) takes the form 

KC,, = ParI + C(t). 

Multiplying the left- and right-hand sides of this equation-by x1(x), integrating the resulting equality over 
the domain n and taking account of the fact that 5 E H, Kc E H, we express C(t) as a function of 5. 
The operator equation then takes the form 

KL,+WC = 0 (2.1) 

where 

MC = -Eb[c] + (21~)-‘9[~]/9 
2n 

S[<] = lrdn2xdedx+dn2K1[5,(8,~,t)-r,(e,-~,r)Jd9 
R 0 

2 = jz,odr 
--K 

Below, together with the space H, we introduce the space 

H= u E t2(Q): jux,(x)dedx = 0 
n 

with the scalar product 

(u, VI, = juu~o(x)dedx 
R 

The operator M will be considered as an unbounded operator in H and the domain of definition of 
this operator is specified as 
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D(M) = u E H’(Q): u = 0 when x = ftc, ~uv;l,(x)&dx = 0 
n I 

The zeroth and first order traces of the function i when 8 = 0,8 = 27~ are considered as equal functions 
in L2(-K, K). 

In order to obtain a bilinear form for u, 2) E D(M), associated with M, it is subsequently necessary 
to calculate the scalar product u, u E D(M) 

(Mu, u), = I[- dn2x(uss + u) - (u,dn2x),]ud6dx 
R 

After integration by parts, we have the form 

m(u, U) = I(ueu,+u,u,-uu)dn2xdedr 
R 

(2.2) 

the domain of definition of which has the form 

v = UE H’(Q):u=O 
{ 

for x = +K, u~i(x)dWx = 0 I 
n 

The traces of the function u when 8 = 0 and Cl = 2rc are equal in L2(-& K). The form m is obviously 
symmetric and continuous in V x V. 

We will now give a mechanical interpretation of the form m. The potential energy II of the surface 
tension forces is given by the formula [l] 

Using the formula for the mean curvature and integrating by parts, we have 

I-I = cwr, 6, 

It is well known that an equilibrium position of a fluid bridge is stable if the quadratic form m(<, c) 
is positive definite. 

3. THE POSITIVE DEFINITENESS OF THE QUADRATIC FORM 
m(<, 6): REDUCTION TO AN EIGENVALUE PROBLEM 

We now define the quantity 

mu1 = j( u; + u,2)dn2xd0dx, X[u] = ~u2dn2xdOdx 
n n 

It exists and is non-negative. According to the definition of a lower bound, a sequence 

(u,} E v: N[U”] = 1 

exists such that 
h = lim &[u,] 

n-9- 

This sequence is bounded in H’(Q). It is then possible to choose a subsequence from it, which we shall 
also denote by {u,}, which weakly converges in H’(Q) and strongly converges in L2(Q) to a function 
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U E H’(R). It is proved using the Banach-Saks-Mazur theorem [15,16] that the traces of the function 
U when 8 = 0, 8 = 27~ are equal in L2(-K, K) and, hence, U E V. Using the same theorem, it is next 
proved that the lower bound 3L is reached when u E U and, finally, that h > 0. 

We will assume [15, 161 that 
u = U+E&, EE R, HUE V 

Then 

and, hence 

~[U+E~U]-~LX[U+E~U]~O, V&E R, V~UE V 

I( Us&+, + U,Gu,)dn2xd0dx - hj U dn’x&dOdx = 0, V&u E V 
n R 

or, using the Lagrange multiplier u, we have 

I( U&ii, + U,&i,)dn2xdt3dx - hj Udn’xGiid0dx + plx,(x)Siidedx = 0 
la n R 

VGE v 
where 

? = (ue H’(n): U=O then x=&K) 

and the traces of the function U for 0 = 0 and 8 = 2~ are equal in L2(-K, K). On putting &i E D(Q), 
which is permissible, we have 

Z(U) k Ua8dn2x+(dn2xU,),+liUdn2x-uX,(x) = 0 

in the sense of distributions and, therefore, also in the sense of functions, since the solutions of this 
elliptic equation belong to C” [17]. 

On calculating u by multiplying this equation directing by Xe(x)/dnx and integrating over the domain 
R, we see that the function U E Cm, which minimizes the ratio in relation (3.1), is the classical solution 
of the auxiliary eigenvalue problem 

Z(u) = 0, p = &Ql(2R%i) 

u = 0 for x = f~, u&(x)d&fx = 0 I 
R 

de, XI = u(e + 27t, x) 

d, = %(K)~b,(e, K) - U,(e, -K)lde- jiqf’&))Idn2xdeds 
0 n 

5% = jY;(x)dx 
-K 

‘I’-,(x) = (dnx + ecnx)‘/dnx 

(3.1) 

and that h is the smallest eigenvalue of the problem. 
We next find the eigenvalues of problem (3.1) and investigate the conditions under which the smallest 

of these eigenvalues is strictly greater than unity, since this condition turns out to be the unique condition 
for stability. 

4. THE EXISTENCE OF THE EIGENVALUES 
OF THE AUXILIARY PROBLEM 

We shall seek solutions of problem (3.1) in the form 

u = o(e)x(x) 
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We have 

where 

O”Xdn*x + @[(dr?xX’)’ + hXdn*x] -v&,(x) = 0 

v = & 6 = i@(e)&3 
0 

dv = Y,(K)[X’(K) -X’(-K)] - j (‘I’-,(x))xdn2xX’(x)d 

and the condition 

-K 

K 
OCJX] = 0, C,[X] = jX(x)x,(x)dx 

is satisfied. 

-K 

We shall distinguish between several cases. 
In the first case 

6zt-j 

We have 

Then 

-o”/O = [(X’dn*x)‘+hXdn*x]l(Xdn*x) = n*, n = 1,2, . . . 

O(e) = A,cos(n6) + &sin(&), A,, B, - const 

and we have the classical Sturm-Liouville problem 

(X’dn*x)‘+(h-n*)Xdn*x = 0, n = 1,2, . . . . X(fK) = 0 

On putting y(x) = X(x)dnx, we obtain the problem 

y” = (2e2sn2x-e*-h+n2)y, n = 1,2, . . . . y(fK) = 0 

Its variational formulation has the following form: it is required to find a functiony E H$-K, K) such 
that 

K 

I [y’y’ + (ie*sn*x - e*)yj]dx = (h - n2) 7 yj&, VjC H;(-K,K) 
-K -K 

The injection from HA(-K, K) into L2(-~, K) is continuous, dense and Eompact. On the other hand, the 

bilinear form of the left-hand side of the last equality, which is equal to jKdn2x& is symmetric, continuous 

and coercive in Hi(-K, K). The problems being considered are none other than standard eigenvalue 
problems. The eigenvalues are strictly greater than n* and, thereby, unity. For each value it = 1,2, . . . , 
the functions y,,(x) (m = 1, 2, . . .) form a complete orthogonal system in I%*(-K, K). 

In the second case, 
C,(x) = 0 

In this case, the function O(O) is constant and, on again puttingy(x) = X(x)dnx, we have 

y” = (2e*sn*x-h-e2)y+v(dnx+ Gsnx)* = 0, y(fK) = 0 

%[y] = j y(x)(dnx+ esnx)*dx = 0 
-K 

(4.1) 
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We introduce the spaces 

% = {YE L2(-l&K): %[y] =O}, T = {ye H&c,K): %[yl =O} 

It can be shown that, as earlier, this here takes the form of a standard eigenvalue problem. These 
eigenvalues_are strictly positive and their eigenfunctionsyO&) (m = 1,2, . . .) form a complete orthogonal 
system in X. It is well known that 1, cos nt3, sin A (n = 1, 2, . . . ) form a complete orthogonal system 
in L*(O, 2x). Then, using the classical theorem in [18], we see that the functions 

yam(n), yn,(x)cosne, ynm(.x)sinne, n,m = 1,2, . . . 

form a complete orthogonal system in L*(Q), the elements of which satisfy the equality 

I ux,(x)dedx = 0 
n 

The method of separation therefore ensures that all of the eigenvalues of problem (3.1) are found. 
Hence, it is necessary to find the sufficient conditions such that all the eigenvalues of problem (4.1) 

are strictly greater than unity. 

5. THE TRANSFORMATION OF PROBLEM (4.1) 

Direct integration of differential equations (4.1) is not simple. Note that the smallest eigenvalue of 
problem (4.1) has the form 

9, 
K K 

h, = inf-j-, 9, = J[y’*+ez(2sn2x-l)y*]dx. 9, = jy*dx 
yev 2 

--K -K 

We now consider the auxiliary problem which is obtained if one puts v = 0 in problem (4.1). It has the 
form 

-y”+e2(2sn2x-1)y = h’y, y(fK) = 0 (5.1) 

Its eigenvalues are strictly positive. 

Lemma 1. The quantity h’ = 1 is not an eigenvalue. 

Proof. In fact, when h’ = 1, the differential equation admits of a particular solutiony = snx and is found to be 
integrable. We have 

y = AF(x)+Bsnx, F(x) =(x-E(x))snx-cnxdnx, A,l3-const 

The boundary conditions y( f K) = 0 give 
B = 0, AF(ic) = 0 

It is easily verified than, in the segment [0, K] the function F(x) increases from -1 to K-E(K) > 0 and have it 
vanishes exactly once. The quantityF(K) is then always non-zero with the exception of a single value of K, denoted 
by cpl, which we discard. Then, A = 0 which completes the proof. 

Lemma 2. The quantity hi # 1. 

Proof. TO prove this, we will show that, when h = 1, problem (4.1) does not have solutions other than the trivial 
solutiony = 0. In fact, in this case the differential equation has the form 

[y’snx-ysn’x]’ = -$[(2sn2x- l)]’ 

It is integrated and its general solution has the form 

y = v(1 +exsnx)+Bsnx+AF(x) 
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From the conditions of problem (4.1), we find 

B = 0, AF(~)+v(l+e~sn~) = 0 

A$, + ~9, = 0, .%3 = jF(x)(2snZx- I)& 
0 

I( 
9, = J(l+ exsnx)(2sn2x- 1)dx 

0 

By integrating by parts, it can be shown that the coefficient of A in the last condition is negative and it follows 
from this that, if both v and A are non-zero, the ratio v, = v/A must be positive. It is easily shown that, in this 
case 

9, + v,,+4, c (1 + e’)K[F(lC) + v,(l + ewsnlc)] = 0 

We therefore arrive at a contradiction, the quantities v and A are equal to zero, whence y = 0. 

Lemma 3. Problem (5.1) admits of a single eigenvalue which is strictly less than unity while the 
remaining eigenvalues are greater than unity. 

Proof. The problem 

- y” + e2(2sn2x- 1)y = 1LIIy, y(fK) = 0 

admits of one and just one negative eigenvalue while all the remaining eigenvalues are greater than unity. In this 
case, we can make use of the following theorem [7]. 

Suppose Q. is the solution of the problem 

-y”+e2(2sn2x- l)y-y = f(x), y(fK) = 0 

If 

Y Qofdx < 0 
-K 

then the quadratic form $d = 9, - Jj2 is positive definite in q. As will be shown below, this condition is satisfied 
when f(x) = x0(x). Under these conditions, we have 

and, as a corollary, we have h, > 1 by virtue of the fact that hi ++ 1. 

Henceforth, we will confine ourselves to searching for the sufficient conditions in order that problem 
(5.1) should have one and just one eigenvalue which strictly exceeds unity. 

We put 

h’= 1 - e2sn20 

Then, the differential equation of problem (5.1) takes the classical form of Lame’s equation 

y" = 
2 2 2 

(2e2sn2x - 1 - e + e sn 0)y 

and we subsequently make use of the classical concepts of the theory of elliptic functions from [ 19,111. 
We denote the real and pure imaginary parts of the half-periods of the function @U by o1 and o3 
respectively and the zeros of the function @‘u by er, e2 and e3 where el > e2 >e3. Finally, we suppose 
that nl = @et, q3 = <03. 

We assume that the eigenvalues h’ E (0, 1) and find where the corresponding value of the quantity 
w must be located. We have 

0 < sn261 < ee2 

However, we know [ll] that 
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a3 

kl 

w, + 0, @) 

Fig. 3 

sn*a = (e,-e3)/(@u-e3). u = 6$alK 

and the function MU takes real values in a rectangular contour with vertices 0, ol, o1 + w3 and 0, 
(Fig. 3). It decreases monotonically from + 03 to --oo when u runs through the contour in a clockwise 
direction starting from zero. 

The double inequality 

O<(e,-e3)l(Pu-e3)<e-* 

is equivalent to the inequality @u > e2. It follows from this that the condition 0 c h’ < 1 is equivalent 
to the inequality 0 < u < o1 and, therefore, @U > el. For u = o1 + iyc, 0 < y. < 03, this condition 
is equivalent to the inequality e2 c MU c el. In the first case, we have 1 - e2 < h’ < 1 and, in the second 
case, -0 c h’ < 1 - e*. 

Furthermore, Hermite [20] found the general solution of Lame’s equation in the form 

e;(x) S(x) = - 
&t(x) 

if both particular integrals, that is, the coefficients of A and B, are linearly independent. Henceforth, 
8, is Jacobi’s theta-function [19]. 

We will now investigate the problem of the existence of values of o, corresponding to 0 < h’ c 1, 
which are such that the two particular integrals are linearly independent. We note that t&(c@K)) = 0 
if u = o3 + 2nwr + 2m03, where IZ and m are integers. Hence, the function 04(o/(2K)) cannot vanish 
when 0 < u c ol, u E R and when u = o1 + iyO, 0 c y. < 03/i. 

We will now write the conditions that the right-hand side of equality (5.2) should vanish when 
x=Oandx=iK.Wehave 

The case when e,(w@K)) = 0 has to be discarded since, then, w = 0 and A’ = 1. Hence A and B are 
non-zero if 

9(ol(2K)) = kni, ke 2 

where [19] 
~su-q,uIo, = kW(2q) 

For 0 < u < ol, u E R, it is necessary to put k = 0. 
The function g(u) = c3z4 - ~rulo, is non-zero when u = 0 and u = ol, and its derivative g’u = 

-@(u + 03) - rh/or is positive when u = 0 and vanishes once in the interval (0, or). 
The function g(u) therefore vanishes when u = 0, that is, when h’ = 1 which is excluded from the 

treatment and when u = ol, that is, when h’ = 1 - e2. 
For u = o1 + iyo, 0 < y. c 03/i, the equation has the form 

62tiyoVi - q ,YO~, = kn;Wo,) 
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It can be shown that the derivative of the function on the left-hand side, which is equal to -p(e+, + 
iyo) - qr/or, is negative. The function ~z(iyo)/i - nry,,/or decreases from zero to -rc/(2wr) in the interval 
(0, CI@), from which it follows that the equation cannot be satisfied except when k = 0 and k = -1. If 
k = 0, we haveys = 0, and hence u = ol, o = K and h’ = 1 - e2. If k = -1, we haveys = 03/i and hence 
u = cc1 + 03, sno = e-l and h = 0, which is excluded from the treatment. 

We will now show that h’ = 1 - e2 cannot be an eigenvalue of problem (5.1). The problem has the 
form 

y” = (2sn*x- l)y, y(+K) = 0 

The differential equation possesses a particular solution cnx, it can be integrated and its general 
solution has the form 

Y = AcnxG(x) + Bcnx 

G(x) = x - (1 - e*)-‘E(x) + (1 - e2)-‘snxdnxcn-‘x 

The conditions y( f rc) = 0 give 
B = 0, AG(K) = 0 

It is easy to show that the function G(x), the derivative of which is equal to cnT2x, is positive in the 
interval [0, K], and it follows this that A = 0. This completes the proof. 

So, for values of 61 corresponding to h’ E (0, l), the two particular integrals of Lame’s equation are 
linearly independent. 

It is now necessary to find the eigenvalues of problem (5.1) for those values of o for which the 
eigenvalues are strictly less than unity. We shall seek the sufficient conditions for which there is just 
one such eigenvalue. 

6. THE SUFFICIENT CONDITION FOR THE EXISTENCE IN PROBLEM 
(5.1) OF A SINGLE EIGENVALUE WHICH IS STRICTLY LESS 

THAN UNITY 

It is necessary to consider the two cases mentioned below. 
First case: 0 c u < ol. In this case o E R and 0 c o < K. From the general integral (5.2) of Lame’s 

equation, we find that h’ = 1 - e2sn2w is an eigenvalue for real values of o, which satisfy the equation 

e,(~)O;‘(~) = kexp(-%&)KK’> 

Using the expression for B(ol(2K)) found above and the formula [19] 

e,(v) = exp(-2rl,o, v)~q&“4a(20, V), q = -p(2), q. = fi(l-q2n) 
n=l 

we represent Eq. (6.1) in the form 

wu = Mu--u,) 
= *exp(-2u,<,u), OlK 

Mu + u,) 
O< U, = K c W, 

(6.1) 

This equation can be solved graphically. We will investigate the left-hand side of the equation. We have 

[c%(u)]’ = Nu-q) F,(u), F,(u) = - cp, + P’u 
o(u f q) 63u- @u, 

We have 
F,(O) = 0, Fo(ul) = 00, Fo(-1 = 4,~~ 

Since &u decreases from zero to -00 in the interval (0, or), we have Fo(ol) > 0. On the other hand, it 
can be verified that Z$(u) < 0. 
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\ 
t) -ee2Wt < -1 

Fig. 4 

It is clear from the graph of the function FO(u) that, if cui < 0, the function F,,(u) has a single zero 
u. and 0 c u. c u1 but, if Q.Q > 0, the function Fe(u) does not vanish in the interval (0, oi). The following 
result can be derived from this: if cui c 0 (and, consequently, q1 < 0 and !$ has a single zero p in the 
interval (0, w,)), the function g(u) decreases from -1 in the interval (0, uo) and increases up to 
exp(-2rbwi) > 1 in the interval (uo, wi). If <ui > 0, then this function increases from -1 up to exp(-2?bq) 
in the interval (0, oi). 

We now investigate the function kexp(-2u1<3u). We have [19] 

r;u = - P(u+C03)-e3-(e3-e,)(e3-e2)l(pu-e3) 

We conclude from this that, if e2 < 0, the function 6; does not vanish in the interval (0, wi) and that, 
if e2 > 0, this function can have a single zero y in the interval (0, oi). Then, if e2 < 0, the function 
exp(-2u1<3u) decreases from unity to exp(-2qioi) and, if e2 > 0, this function has a minimum when 
u = y. 

We can investigate Eq. (6.2) graphically in this way. In the case when <ui c 0, which implies that 
rb < 0 and e2 > 0, we have in Fig. 4 a graph of the function k(u) depicted by the solid curve and plots 
of the functions +-exp(-2ui<,u) depicted by the dashed curves. 

Hence, Eq. (6.2) has a single root belonging to the interval (0, ui). 
In the case when <ui > 0, on comparing the angular coefficients of the tangents to the curves at 

the point u = 0, we conclude that Eq. (6.2) has a single root in the interval (0, ui) if the condition 
@i + e3u1 < 0 is satisfied. Moreover, in the case of a real u which satisfies the inequality 0 c u c ol, 
Eq. (6.2) has a single root if <ui < 0 or if 0 < <z~i - e3ul. 

Second case: u = o1 + iyo, 0 < y. < 03/i. In this case h’ = 1 - e2sn20 is an eigenvalue for the values 
uwiw/K of Eqs (6.2). Using the relations between the functions o and o1 [19], we find the equivalent 
equation in y 

&(b+J = ~l(iyo-ul) 
$(iYo + ul) 

= fexp(-h,&(b@) (6.3) 

It can be shown at once that the quantities on the left- and right-hand sides have a modulus equal to 
unity. We now replace (6.3) with the equation 

$iyo)2 = +exp(-4ulL(iyo)) (6.4) 
When y. = 0 (y. = w3/i respectively), both sides of the equation are equal to unity (to exp(-4r13u1) 
respectively). Hence, y. = 0 and y. = 03/i are solutions of the equation, from which it follows that 
u = o1 and u = o1 + o3 are solutions of Eq. (6.2). 

We will assume that the argument on each of the sides is equal to zero and trace the values of the 
argument when y. increases from zero to 03/i. 
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We have [19] 

-L rug o,(Oo - 4) 2 
dY0 [ ( a,(90 + UI) 13 

= 2[~,(iyo-u,)-~,(iyo+ul)l = 

= 2 
[ 
-2&+ kfu, 

@(WI + iY0) - Pq 1 
But, here, we have 

e2 < @(a+ + iy,) < el < pul and P’u, < 0 

whence it follows that 

P’U, 
P(O, + iY0) - PUl 

>o 

If <ui > 0, the derivative being considered can vanish and a full discussion of this is extremely complex. 
We shall discuss the case when <ui < 0. In this case, the derivative under consideration is positive and 
C(iyo)* constantly increases from zero in the interval (0, as/i). For cui < 0, we have nl < 0 and e2 > 0. 
From the known relation nlof - n301 = h/2, we then derive -4n3w1/i > 27~ The argument of the function 
exp(-4rt3u1) then has the form An3u1 + 2A%, where the integer N is chosen in such a way that this 
argument does not exceed 27~ 

The argument of the function exp(-4uic2(iyo)) is equal to -4ulc2(iy)/imod(2x). We have 

d&oK2(iyo)~~l = -P(@2+iyo) = -e2-(e2-el)(e2-e3)l(g(iyo)-e,) 

The second term is negative and it follows from this that the argument of the function exp(-4ui[2(iyo)) 
increases from zero to -4j3ul/i - 2N7c. 

Finally, it can be shown that, in the interval (0, a.@), the second derivatives of the functions arg[G1(&o)2] 
and -4u11,2(iyo)/i are negative and positive respectively. The graph of the first function then lies above 
the graph of the second function, which proves the existence in Eq. (6.4) of just the two roots y. = 0 
and y. = a&. Equation (6.2) only possesses two roots from which it follows that snol = 1 and 
sno = e-l, that is, h’ = 1 - e2 and h’ = 0. Since these two values have to be discarded, we obtain the 
following result: for <ui c 0, a value of o of the form o1 + iyo, 0 c y. G 03/i does not exist, which 
ensures the existence of an eigenvalue of problem (5.1), which is strictly less than unity. 

So, if <ui c 0, just one real value of o exists which corresponds to an eigenvalue h’ < 1. The fact 
that the inequality L&i < 0 is the condition which is sufficient in order that the subsidiary problem (5.1) 
should have exactly one eigenvalue, which is strictly less than unity, is also substantiated. 

We will now make a few remarks concerning the condition cui c 0. This condition implies the 
inequality n1 < 0. From the relation [ 111 

it is possible to derive that the conditions n1 c: 0 is equivalent to the inequality 

K > 3El(2 - e2) 

WehaveK>Eand,whene+l,wehaveE-+landK--++~. Hence, the condition is satisfied 
when e is sufficiently close to unity. 

On the other hand, the inequality L,ui < 0 holds if h < u1 < ol, where l3 is a zero of the function 5~ 
in the interval (0, oi). This last condition is certainly ensured if the value of K is sufficiently close to K 
or if cpl is sufficiently close to cpo. The quantity 

F(K) = [K-E(K)]snK-cnKdnK 

is then positive, as will be assumed henceforth. 
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7. SUFFICIENT CONDITIONS IN ORDER THAT ALL 
THE EIGENVALUES OF PROBLEM (4.1) ARE STRICTLY 

GREATER THAN UNITY 

We assume that cur < 0 and F(K) > 0. We use Vogel’s theorem, which has been mentioned above, and 
consider the problem 

- y” + e2(2S”*x- I))‘-y = X0(X), y(kK) = 0 (7.1) 

We introduce the functional 

G[YI = j~x&)dxcO 
--K 

If a0 is the solution of this problem and G[@a] < 0, then the quadratic functional 
+ 

I dx[y’* + e2(2sn2x - l)y2 - y2]dx 
-lc 

is positive definite in the space 

6 = {y E I-&-K, K), G[y] = 0) 

and it follows from this that the smallest eigenvalue of problem (4.1) 

h, = inf-.9,/d, 
YCT 

is strictly greater than unity. 
We will now calculate the solution QO. The general solution of the differential equation in problem 

(7.1) has the form 

y = Y(x) + Bsnx, Y(x) = A[(x-E(x))snx-cnxdnx] -(l +exsnx) 

By virtue of the boundary conditions, we have B = 0 and 

Y = Y(K) 

whence, by virtue of the fast that the coefficient of A is positive, we have A > 0. The Vogel condition 
has the form 

G[Y(x)l< 0 

It is satisfied since, according to what has been proved above, the coefficient of A is negative. 

8. THE STABILITY OF A FLUID BRIDGE 

We shall always assume that the conditions 

ru, < 0, F(K) > 0 

are satisfied. 
By virtue of the definition of the quantity hr, we have 

JCC2h,X, V’UE v 

(8.1) 

Suppose 0 < E < 1 and 

Mu, u) = E&+(1-&)A-H 
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Then 

The stability and small oscillations of an unduloidal fluid bridge 

m(u,u)_>&JCC+[(l-&)A*--l]N 

Since hi > 1, it is possible to satisfy the inequality (1 - &)hi - 1 by choosing a parameter E which satisfies 
the inequality 0 < E c (hi - 1)/X1. Since dn% takes values between two strictly positive numbers in the 
interval (-K, K), a T. > 0 can be found such that 

m(u, u) 2 ~I141~l(n~, VJU E V 

from which the coercivity of the bilinear form m in I/x I/ follows. Consequently, inequalities (8.1) are 
sufficient conditions for the stability of a wave-like bridge. 

9. THE EXISTENCE OF NATURAL FREQUENCIES 

From the operator equation (2.1) we derive 

(KC,,, r>, + l.H<, r, = 0, vc E v, p = al(pa2) 

We introduce the space fi, which is an enlargement of Vwith a norm associated with the scalar product 
(u, u)~ = (KU, u)H.The variational formulation then takes the following form: it is required to find 
c(t) E I/such that 

(r,,.S)~+Pm(Li) = 0, vse v (9.1) 

It is well known that, when the conditions &i < 0 and F(K) > 0 are satisfied, the bilinear form m is 
symmetric, continuous and coercive in V x I’. On the other hand, the injection of I/ into H is dense by 
construction, continuous and compact. The last two properties immediately imply the classical properties 
of injection form H’(Q) to L2(sZ) and the continuity of the operator K. 

We therefore have a standard problem in the theory of oscillations [21]: an innumerable set of 
eigenvalues 

O<R,sn,r...si2”, La,+- 

exists such that the corresponding eigenfunctions form an orthogonal basis in the space I? as well as 
in the space I’, which is equipped with the scalar product m(. , .). 
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